Non-uniform grid Lattice Boltzmann simulations of 1-D dissipative magnetohydrodynamics
by Angus I.D. Macnab, George Vahala, Linda Vahala
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 5, No. 1/2, 2005

Abstract: Lattice Boltzmann methods (LBMs) provide a kinetic simulation technique for solving systems governed by non-linear conservation equations. Most LBMs use the linearised single time relaxation form of the Boltzmann equation to temporally evolve particle distribution functions on a discrete spatial lattice. These kinetic simulation techniques are computationally efficient and highly parallelisable. The use of non-uniform distributions of the spatial grid further enhances the computational efficiency of these algorithms by focusing computational effort around structures of interest such as velocity shocks and current sheets. Here, we apply a non-uniform grid LBM to one-dimensional magnetohydrodynamic systems. Simulations are presented for three sets of initial conditions in order to analyse the effects of the presence of the magnetic induction equation and compare the results to Burger's turbulence.

Online publication date: Wed, 08-Dec-2004

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com