Biological interaction networks based on non-parametric estimation
by Kalliopi D. Kalantzaki; Ekaterini S. Bei; Minos Garofalakis; Michalis Zervakis
International Journal of Biomedical Engineering and Technology (IJBET), Vol. 13, No. 4, 2013

Abstract: Biological networks are often described as probabilistic graphs in the context of gene and protein sequence analysis in molecular biology. Microarrays and proteomics technologies facilitate the monitoring of expression levels over thousands of biological units over time. Several experimental efforts have appeared aiming to unveiling pairwise interactions, with many graphical models being introduced in order to discover associations from expression-data analysis. However, the small size of samples compared to the number of observed genes/proteins makes the inference of the network structure quite challenging. In this study, we generate gene-protein networks from sparse experimental temporal data using two methods, partial correlations and Kernel Density Estimation (KDE), in an attempt to capture genetic interactions. Applying KDE method we model the genetic associations as Gaussians approximations, while through the dynamic Gaussian analysis we aim to identify relationships between genes and proteins at different time stages. The statistical results demonstrate valid biological interactions and indicate potential new indirect relations that deserve further biological examination for validation.

Online publication date: Sat, 27-Sep-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biomedical Engineering and Technology (IJBET):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com