ANN modelling for surface roughness in electrical discharge machining: a comparative study
by Raja Das; M.K. Pradhan
International Journal of Service and Computing Oriented Manufacturing (IJSCOM), Vol. 1, No. 2, 2013

Abstract: This is an attempt to present three different classes of artificial neural network (ANN) models, namely back-propagation network (BPN), radial basis function network (RBFN) and recurrent neural network (RNN) for the prediction of surface roughness (Ra) in electrical discharge machining (EDM). Surface roughness is an important issue in the manufacturing. The input variable chosen was the pulse current (Ip), the pulse duration (Ton) and duty cycle (τ). A series of experiments was conducted AISI D2 to acquire the data for training and testing, and it was found that the ANN models could predict Ra with reasonable accuracy, under varying machining conditions. A close correlation between the model prediction and the experimental results was witnessed. Moreover, it was noticed that all three models are offering quite an agreeable prediction. The RBFN model is quite analogous with other models but demonstrated a slightly better performance than others.

Online publication date: Wed, 02-Jul-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Service and Computing Oriented Manufacturing (IJSCOM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com