Multi-level clustering support vector machine trees for improved protein local structure prediction Online publication date: Tue, 21-Oct-2014
by Wei Zhong; Jieyue He; Xiujuan Chen; Yi Pan
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 9, No. 2, 2014
Abstract: Local protein structure prediction is one of important tasks for bioinformatics research. In order to further enhance the performance of local protein structure prediction, we propose the Multi-level Clustering Support Vector Machine Trees (MLSVMTs). Building on the multi-cluster tree structure, the MLSVMTs model uses multiple SVMs, each of which is customized to learn the unique sequence-to-structure relationship for one cluster. Both the combined 5 × 2 CV F test and the independent test show that the local structure prediction accuracy of MLSVMTs is significantly better than that of one-level K-means clustering, Multi-level clustering and Clustering Support Vector Machines.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com