Two-level robust sequential covariance intersection fusion Kalman predictors over clustering sensor networks with uncertain noise variances
by Wen Juan Qi; Peng Zhang; Zi Li Deng
International Journal of Sensor Networks (IJSNET), Vol. 14, No. 4, 2013

Abstract: This paper studies the problem of designing two-level robust sequential covariance intersection (SCI) fusion Kalman predictors for the clustering sensor networks with noise variances uncertainties. The sensor networks consist of many clusters, which are partitioned by the nearest neighbour rule. According to the minimax robust estimation principle, based on the worst-case conservative clustering sensor network with the conservative upper bound of noise variances, the two-level SCI fusion Kalman predictors are presented where the first level is the local SCI fusion predictors and the second level is the global SCI fusion predictor. This two-level fused structure can significantly reduce the communicational burden and save the energy sources. The robustness of the local and fused Kalman predictors is proved based on the Lyapunov equation method, and the robust accuracy relations are proved. A simulation example verifies the correctness and effectiveness of the proposed robust SCI predictor.

Online publication date: Mon, 03-Feb-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Sensor Networks (IJSNET):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com