Improved genetic algorithms for the travelling salesman problem
by Zakir Hussain Ahmed
International Journal of Process Management and Benchmarking (IJPMB), Vol. 4, No. 1, 2014

Abstract: The travelling salesman problem (TSP) is a benchmark problem in which a salesman has to visit all nodes (cities) in a network exactly once except the starting node, come back to the starting node and find the shortest tour. Genetic algorithm (GA) is one of the best algorithms to deal with the travelling salesman problem (TSP). In GA, crossover operator plays a vital role and the sequential constructive crossover (SCX) is one of the best crossover operators for solving the TSP. Several improvements have been proposed for other crossover operators. In this paper we propose four improved genetic algorithms using three local search methods - 2-opt search, a hybrid mutation, and a combined mutation operator, and incorporate them into SCX. The experimental results on some TSPLIB instances show that our improved GAs can significantly improve simple GA using SCX in terms of solution quality.

Online publication date: Sat, 21-Jun-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Process Management and Benchmarking (IJPMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com