A formal framework to specify and verify real-time properties on critical systems Online publication date: Tue, 21-Oct-2014
by Nouha Abid; Silvano Dal Zilio; Didier Le Botlan
International Journal of Critical Computer-Based Systems (IJCCBS), Vol. 5, No. 1/2, 2014
Abstract: We propose a verified approach to the formal verification of timed properties using model-checking techniques. We focus on properties commonly found during the analysis of reactive systems, expressed using real-time specification patterns. We use observers in order to transform the verification of these timed patterns into the verification of simpler LTL formulas. While the use of observers for model-checking is quite common, our contribution is original in several ways. First, we define a formal framework to verify that observers are correct and non-intrusive. Second, we define different classes of observers for each pattern and use a pragmatic approach in order to select the most efficient candidate in practice. This approach is implemented in an integrated verification tool chain for the Fiacre language.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Critical Computer-Based Systems (IJCCBS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com