Improving production quality of a hot-rolling industrial process via genetic programming model Online publication date: Mon, 02-Mar-2015
by Alaa F. Sheta; Hossam Faris; Ertan Öznergiz
International Journal of Computer Applications in Technology (IJCAT), Vol. 49, No. 3/4, 2014
Abstract: Satisfying the customers' need for manufacturing plants and the demand for high-quality products becomes more challenging nowadays. Manufacturers need to retain advanced attributes of their products by applying high-quality automation process. In this paper, a genetic programming (GP) approach is applied in order to develop three mathematical models for the force, torque and slab temperature in the hot-rolling industrial process. A frequency-based analysis using GP is performed to provide an insight into the process significant factors. The performance of the GP developed models is evaluated with respect to the known soft computing models explored in the literature. Experimental data were collected from the Ereğli Iron and Steel Factory in Turkey and used to test the performance of the GP models. Genetic programming shows better performance modelling capabilities compared with models-based artificial neural networks and fuzzy logic.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com