Compiling irregular applications for reconfigurable systems
by Robert J. Halstead; Jason Villarreal; Walid A. Najjar
International Journal of High Performance Computing and Networking (IJHPCN), Vol. 7, No. 4, 2014

Abstract: Algorithms that exhibit irregular memory access patterns are known to show poor performance on multiprocessor architectures, particularly when memory access latency is variable. Many common data structures, including graphs, trees, and linked-lists, exhibit these irregular memory access patterns. While FPGA-based code accelerators have been successful on applications with regular memory access patterns, they have not been further explored for irregular memory access patterns. Multithreading has been shown to be an effective technique in masking long latencies. We describe the compiler generation of concurrent hardware threads for FPGAs with the objective of masking the memory latency caused by irregular memory access patterns. The CHAT compiler extends the ROCCC toolset to generate customised state information for each dynamically generated thread. Initial results show a speed-up of 50x.

Online publication date: Tue, 29-Jul-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of High Performance Computing and Networking (IJHPCN):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com