Implementing a neuro fuzzy expert system for optimising the performance of chemical recovery boiler Online publication date: Sat, 28-Jun-2014
by S. Krishna Anand; T.G. Sundara Raman; S. Subramanian
International Journal of Artificial Intelligence and Soft Computing (IJAISC), Vol. 4, No. 2/3, 2014
Abstract: In chemical recovery boilers of paper mills, main steam outlet temperature control cannot be solved by straight forward automation control. As prior knowledge of the mechanism to maximise steam generation without affecting steam main temperature is unknown, a backpropogation supervisory neural network has been designed which exhibits a good degree of reinforcement learning. Various parameters considered encompassing concentration, composition and firing load of black liquor solids may not have ideal fixed values. Hence, a type 2 fuzzy logic model has been designed which in turn monitors the parameters and predicts the results. Errors are fed back iteratively through the backpropogation network, until the network learns the model. Fuzzy C-means clustering technique has been used to find coherent clusters. Then sensitivity analysis has been done to identify the parameters playing a significant role in obtaining the results. As it can be observed that the behaviour is stochastic, particle swarm optimisation has been implemented to optimise the combined effect of all parameters. Through this tool connecting steam attemperation control and smart soot blowing, clean heating surface is ensured resulting in enhanced green energy output and availability.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Artificial Intelligence and Soft Computing (IJAISC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com