Characterisation of semantic similarity on gene ontology based on a shortest path approach
by Ying Shen; Shaohong Zhang; Hau-San Wong; Lin Zhang
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 10, No. 1, 2014

Abstract: Semantic similarity defined on Gene Ontology (GO) aims to provide the functional relationship between different GO terms. In this paper, a novel method, namely the Shortest Path (SP) algorithm, for measuring the semantic similarity on GO terms is proposed based on both GO structure information and the term's property. The proposed algorithm searches for the shortest path that connects two terms and uses the sum of weights on the path to estimate the semantic similarity between GO terms. A method for evaluating the nonlinear correlation between two variables is also introduced for validation. Extensive experiments conducted on the PPI dataset and two public gene expression datasets demonstrate the overall superiority of SP method over the other state-of-the-art methods evaluated.

Online publication date: Tue, 21-Oct-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com