A gradient-based adaptive learning framework for online seizure prediction
by Shouyi Wang; Wanpracha Art Chaovalitwongse; Stephen Wong
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 10, No. 1, 2014

Abstract: Most of the current epileptic seizure prediction algorithms require much prior knowledge of a patient's pre-seizure electroencephalogram (EEG) patterns. They are impractical to be applied to a wide range of patients due to a high inter-individual variability of pre-seizure EEG patterns. This paper proposes an adaptive prediction framework, which is capable of accumulating knowledge of pre-seizure EEG patterns by monitoring long-term EEG recordings. The experimental results on five patients indicate that the adaptive prediction framework is effective to improve prediction accuracy over time and thus achieve a personalized seizure predication for each patient.

Online publication date: Tue, 21-Oct-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com