Design of method and mechanism for geothermal energy extraction Online publication date: Sat, 26-Jul-2014
by C. Balaji Krishna Kumar
International Journal of Renewable Energy Technology (IJRET), Vol. 5, No. 3, 2014
Abstract: By drilling using a specially designed hydride carbide (melting point: 1,365°C) drill, we can drill the earth's crust to about 5 to 40 km to reach temperatures of 700 to 1,000°C, with minimum cost of the drill and drilling technology. Further, we can extract energy by pouring in water on an inserted carbide alloy vessel into the drilled well and bringing out as steam to drive the turbines. By this idea and drilling technology, we can meet out all the challenges faced by geothermal energy thereby providing most efficient renewable energy forever to all parts of the world especially to countries like India, etc., where there are no geothermal reservoirs at low cost. This drilling system produces both rotary and hammering action. This drilling system reduces the entire drill pipe weight. The drill pipe is supported by means of pneumatic cylinders for hammering action to the supports in the hole along the circumference. Thereby, the entire 17,000 T of the drill pipe weight for 15 kilometres is divided to the supports and each supports carry only approximately 2 T.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Renewable Energy Technology (IJRET):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com