RELAP5-3D transient modelling for NGNP integrated plant Online publication date: Tue, 28-Oct-2014
by Nolan A. Anderson; Piyush Sabharwall
International Journal of Nuclear Energy Science and Technology (IJNEST), Vol. 8, No. 3, 2014
Abstract: The High-Temperature Gas-cooled Reactor (HTGR) is designed with outlet temperatures ranging between 750°C and 800°C. These high outlet temperatures enhance the power production efficiency and facilitate a variety of industrial applications. The objective of this study is to understand the response of the primary system to potential transients in the secondary system. For this analysis, the transient condition originates in the Intermediate Heat Exchanger (IHX) or Steam Generator (SG) of the HTGR-integrated plant. The transients analysed are: a loss of pressure; loss of feedwater flow; inadvertent closure of main steam valve; decrease in returning gas temperature and heat load step change. The results show a large dependence on the negative reactivity added to the fuel as a function of increased temperature. The returning gas temperature decrease transient resulted in the highest fuel temperature (1361°C). Fuel temperature was shown to be less than the 1600°C fuel limit for each case analysed.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nuclear Energy Science and Technology (IJNEST):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com