Structure stability of LixHyV3O8 exposed to water-vapour Online publication date: Wed, 14-Jan-2015
by Mário Simões; Lassi Karvonen; Alexandra Maegli; Songhak Yoon; Simone Pokrant; Anke Weidenkaff; Yoann Mettan
International Journal of Nanotechnology (IJNT), Vol. 11, No. 9/10/11, 2014
Abstract: Chemically lithiated LixHyV3O8 was prepared as the starting material in this study owing to its interesting properties for lithium-ion intercalation and further application in the positive electrode of lithium-ion batteries. The hydrophilic character of the synthesised compound was evaluated because even ppm water level inside batteries containing electrolytes with fluorinated salts like LiPF6 can dramatically influence the battery stability. The structural stability of the lithiated vanadate after exposure to water-vapour was evaluated ex situ by XRD, TGA and TEM. TGA showed that at least 4 wt.% of water can be incorporated into the material. Water intercalates in the vanadate lattice filling the particles from the outer shell towards the bulk. Prolonged exposure to water-vapour saturated atmosphere leads to irreversible exfoliation of the crystal structure. Weakly bonded intercalated water can be removed without any damage to the crystal structure by an annealing step at 200°C for 2 h in air.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com