A two-stage data fusion model for wireless sensor networks Online publication date: Thu, 24-Jul-2014
by Yong Yin; Chaoyong Zhang; Yu Li
International Journal of Sensor Networks (IJSNET), Vol. 15, No. 3, 2014
Abstract: Wireless sensor networks (WSNs) are widely applied in many industrial and consumer fields, and data fusion arises as a critical discipline concerned with how data collected by sensors can be processed. However, existing research results on data fusion cannot achieve the optimal performance of the accuracy, the processing speed and the network life-span simultaneously. In this paper, a two-stage data fusion model is established. On the basis of this model, a fusion matrix is constructed to get rid of the redundant data so as to reduce the data fusion time at the first stage. Then strategies of BP neural network are adopted at the second stage to fuse data for more confident ones, which guarantees the fusion accuracy further. Simulations and experiments show that the performance of both the accuracy and real-time property is much improved.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Sensor Networks (IJSNET):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com