A group-specific tuning parameter for hybrid of SVM and SCAD in identification of informative genes and pathways Online publication date: Tue, 21-Oct-2014
by Muhammad Faiz Misman; Mohd. Saberi Mohamad; Safaai Deris; Siti Zaiton Mohd. Hashim
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 10, No. 2, 2014
Abstract: The pathway-based microarray classification approach leads to a new era of genomic research. However, this approach is limited by the issues in quality of pathway data. Usually the pathway data are curated from biological literatures and in specific biological experiment (e.g., lung cancer experiment), context free pathway information collection process takes place leading to the presence of uninformative genes in the pathways. Many methods in this approach neglect these limitations by treating all genes in a pathway as significant. In this paper, we proposed a hybrid of support vector machine and smoothly clipped absolute deviation with group-specific tuning parameters (gSVM-SCAD) to select informative genes within pathways before the pathway evaluation process. Our experiment on canine, gender and lung cancer datasets shows that gSVM-SCAD obtains significant results in identifying significant genes and pathways and in classification accuracy.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com