Numerical simulation of aerosols in an aircraft wake using a 3D LES solver and a detailed microphysical model
by Xavier Vancassel; Philippe Mirabel; François Garnier
International Journal of Sustainable Aviation (IJSA), Vol. 1, No. 2, 2014

Abstract: The global impact of aviation on the atmosphere is generally determined using the total amount of gas and particulate matter emitted at the aircraft engine exit but generally ignore some of the physical transformations occurring at much smaller scales in the aircraft wake. In this work, we present an offline alternative method based on the use of a detailed plume aerosol model combined to fluid trajectories calculated from 3D large-eddy simulations (LESs). The study has been limited to the first 10 s behind a type Airbus 340 aircraft. The results have been compared to those obtained from a one-way coupling approach including a simple microphysics water vapour deposition model on soot cores. The respective evolutions of average ice particles radius are in good agreement. Furthermore, different types of aerosol properties are examined including the charged volatile particles, the dry and activated soot and the ice crystals from homogeneous and heterogeneous freezing. The variability of the aerosol size distribution clearly illustrates the influence of the mixing, as a function of the position in the aircraft plume. Finally, the volatile particles distribution exhibits a bimodal shape resulting from the presence of charges, in agreement with that observed experimentally.

Online publication date: Wed, 12-Nov-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Sustainable Aviation (IJSA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com