Multidisciplinary modelling and position tracking control of an electro-hydrostatic actuator using a novel adaptive fuzzy-PID controller Online publication date: Thu, 29-Jan-2015
by Mohammad Javad Mirshojaeian Hosseini; Mahdi Aliyari Shoorehdeli
International Journal of Advanced Mechatronic Systems (IJAMECHS), Vol. 6, No. 1, 2014
Abstract: Electro-hydrostatic actuator (EHA) is a kind of hydraulic system in which fluid is routed directly by pump to the actuator. In this study, a novel adaptive fuzzy-PID controller is developed to improve position controlling performance of an EHA. First of all, design and simulation of an EHA by using multidisciplinary modelling method is presented. This model is evaluated by soft validation method. The whole proposed novel control system is composed of a pair of interconnected subsystems, that is, a simple fuzzy-PID controller (SFPID) and a radial basis function neural network (RBFNN) to enhance the tracking performance. The RBFNN fuzzy-PID control (RBFNNF-PID) is applied to EHA. Also, SFPID control, fuzzy-PID control based on extended Kalman filter using grey predictor (FPIDKG) and simple adaptive control (SAC) as significant controls are applied to EHA. The simulation results have shown a significant improvement in transient response and reduction in sum square error (SSE).
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Advanced Mechatronic Systems (IJAMECHS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com