Multi-criteria probability collectives
by Neha S. Patankar; Anand J. Kulkarni; Kang Tai; T.D. Ghate; A.R. Parvate
International Journal of Bio-Inspired Computation (IJBIC), Vol. 6, No. 6, 2014

Abstract: The nature-/bio-/socio-inspired optimisation techniques can efficiently handle unconstrained problems; however, their performance gets significantly affected when applied for solving constrained problems. This paper proposes a variation of the distributed optimisation multi-agent system (MAS) approach of probability collectives (PC) in collective intelligence domain referred to as multi-criteria probability collective (MCPC). In this approach, the constraints are efficiently handled by giving equal importance as the objective function. It is validated by solving a variety of constrained test problems including tension/compression spring design problem and pressure vessel design problem. The solution to these problems proves that the MCPC approach can be applied to a variety of complex practical/real world problems.

Online publication date: Sat, 24-Jan-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com