Lie symmetry analysis of time-fractional generalised Korteweg-de Vries equations
by Youwei Zhang
International Journal of Dynamical Systems and Differential Equations (IJDSDE), Vol. 5, No. 1, 2014

Abstract: In present paper, time-fractional generalised Korteweg-de Vries equations (KdVs) are considered, a systematic investigation to derive Lie point symmetries of the equations are presented and compared. Each of them has been transformed into a nonlinear ordinary differential equation with a new independent variable are investigated. The derivative corresponding to time-fractional in the reduced formula is known as the Erdélyi-Kober fractional derivative.

Online publication date: Wed, 29-Apr-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Dynamical Systems and Differential Equations (IJDSDE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com