The influence of muscle action on joint loading during dynamic finger pressing tasks in an open-source modelling environment Online publication date: Sat, 07-Feb-2015
by Alexander R. MacIntosh; Nicolas Vignais; David M. Cocchiarella; Aaron M. Kociolek; Peter J. Keir
International Journal of Human Factors Modelling and Simulation (IJHFMS), Vol. 4, No. 3/4, 2014
Abstract: Assessing finger joint loading is essential to the prevention of work-related musculoskeletal disorders of the hand and fingers. This study aimed to evaluate the effect of muscle action on joint loading during dynamic finger pressing tasks using an open-source musculoskeletal modelling platform. Eight participants performed submaximal dynamic index finger pressing tasks while maintaining a nominal vertical target force of 10 N. Kinematic and force data were used to develop and assess an inverse dynamics link segment model and a musculoskeletal model. Although musculoskeletal model results for metacarpophalangeal joint compression evaluated statically (34.92 ± 1.53 N) and dynamically (34.80 ± 4.40 N) did not differ, changes in anterior-posterior shear and compression throughout the motions identify where the current open-source model is able to provide valuable insight into the assessment of risk of developing MSD during sub-maximally loaded dynamic pressing tasks.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Human Factors Modelling and Simulation (IJHFMS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com