ACC-FMD: ant colony clustering for functional module detection in protein-protein interaction networks
by Junzhong Ji; Hongxin Liu; Aidong Zhang; Zhijun Liu; Chunnian Liu
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 11, No. 3, 2015

Abstract: Mining functional modules in Protein-Protein Interaction (PPI) networks is a very important research for revealing the structure-functionality relationships in biological processes. More recently, some swarm intelligence algorithms have been successfully applied in the field. This paper presents a new nature-inspired approach, ACC-FMD, which is based on ant colony clustering to detect functional modules. First, some proteins with the higher clustering coefficients are, respectively, selected as ant seed nodes. And then, the picking and dropping operations based on ant probabilistic models are developed and employed to assign proteins into the corresponding clusters represented by seeds. Finally, the best clustering result in each generation is used to perform the information transmission by updating the similarly function. Experimental results on some benchmarked datasets show that ACC-FMD outperforms the CFinder and MCODE algorithms and has comparative performance with the MINE, COACH, DPClus and Core algorithms in terms of the general evaluation metrics.

Online publication date: Thu, 05-Feb-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com