Prediction of lake eutrophication using artificial neural networks
by Shouliang Huo; Zhuoshi He; Jing Su; Beidou Xi; Lieyu Zhang; Fengyu Zan
International Journal of Environment and Pollution (IJEP), Vol. 56, No. 1/2/3/4, 2014

Abstract: An artificial neural network (ANN), which is a data-driven modelling approach, is proposed to indicate the water quality of Lake Fuxian, the deepest lake of southwest China. To determine the nonlinear relationships between the water quality factors and eutrophication indicators, several ANN models were chosen. The back-propagation and radial basis function neural network models were applied to relate the key factors that influence a number of water quality indicators, such as total nitrogen (TN), secchi disk depth (SD), dissolved oxygen (DO) and chlorophyll-a (Chl-a) in Lake Fuxian. The measured data were fed to the input layer, representing forcing functions to control the in-lake biochemical processes. Eutrophication indicators (TN, SD, DO and Chl-a) were represented in the output layers. The results indicated that the back-propagation neural network model performed better than radial basis function neural network model in ten months prediction and was able to predict these indicators with reasonable accuracy. Such neural networks can be a valuable tool for lake water management.

Online publication date: Sat, 07-Mar-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Environment and Pollution (IJEP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com