Mining association rules using hybrid genetic algorithm and particle swarm optimisation algorithm Online publication date: Wed, 18-Mar-2015
by K. Indira; S. Kanmani
International Journal of Data Analysis Techniques and Strategies (IJDATS), Vol. 7, No. 1, 2015
Abstract: Evolutionary computation has become the popular choice for solving complex problems, which are otherwise difficult to solve by traditional methods. Genetic algorithm (GA) and particle swarm optimisation (PSO) are both population-based heuristic search methods, which are well suited for mining association rules. GA and PSO both have their unique features and limitations. A hybrid method combining both genetic algorithm and particle swarm optimisation called hybrid GA/PSO (GPSO) is proposed in this paper. This method is used to bring out the balance between exploration and exploitation, which will result in accurate prediction of the mined association rules and consistency in performance. GA reduces the exploitation tasks and exploration is taken care by PSO. The GPSO methodology for mining association rules performs better than the individual performance of both GA and PSO in terms of predictive accuracy and consistency when tested on five benchmark datasets in the University of California Irvine (UCI).
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Analysis Techniques and Strategies (IJDATS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com