Cyclic CO2 capture performance of CaO-based sorbents obtained from various precursors
by Deng-Feng Zhang; Li-Li Gu; Yun-Hua Huang
International Journal of Global Warming (IJGW), Vol. 7, No. 2, 2015

Abstract: The effects of pore morphology and crystal structure of CaO-based sorbents derived from various precursors were investigated to elucidate the property dependence of CaO-based sorbent performance for cyclic CO2 capture. The results indicate that CO2 capture capacity of the first carbonate looping cycle is dependent on the specific surface area of CaO-based sorbents. The carbonation conversions of the initial calcined sorbent are restricted from 29% to 83% due to the limitations in the small pores with diameter range from 20 to 70 nm. The initial calcination of CaO-based sorbents obtained from the inorganic precursors leaves an 'imprint' in the following carbonation/calcination cycles, which leads to greater decay rate of carbonate conversion than the organic precursors. Increase of carbonate conversion with cycle number is found for CaO-based sorbent obtained from calcium L-lactate hydrate and this reactivation phenomenon is probably due to its special crystal structure.

Online publication date: Thu, 05-Mar-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Global Warming (IJGW):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com