New progresses in swarm intelligence-based computation Online publication date: Thu, 12-Mar-2015
by Haibin Duan; Qinan Luo
International Journal of Bio-Inspired Computation (IJBIC), Vol. 7, No. 1, 2015
Abstract: Nature is a great and immense source of inspiration for solving complex problems in the real world. The well-known examples in nature for swarms are bird flocks, fish schools and the colony of social insects. Birds, ants, bees, fireflies, bats, and pigeons are all bringing us various inspirations for swarm intelligence. In 1990s, swarm intelligence algorithms based on ant colony have highly attracted the interest of researchers. During the past two decades, several new algorithms have been developed depending on different intelligent behaviours of natural swarms. This review presents a comprehensive survey of swarm intelligence-based computation algorithms, which are ant colony optimisation, particle swarm optimisation, artificial bee colony, firefly algorithm, bat algorithm, and pigeon inspired optimisation. Future orientations are also discussed thoroughly.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com