Hybridisation of genetic algorithms and tabu search approach for reconstructing convex binary images from discrete orthogonal projections
by Mohamed Hadded; Fethi Jarray; Ghassen Tlig; Hamadi Hasni
International Journal of Metaheuristics (IJMHEUR), Vol. 3, No. 4, 2014

Abstract: In this paper, we consider a variant of the NP-complete problem of reconstructing HV-convex binary images from two orthogonal projections, noted by RCBI(H, V). This variant is reformulated as a new integer programming problem. Since this problem is NP-complete, a new hybrid optimisation algorithm combining the techniques of genetic algorithms and tabu search methods, noted by GATS is proposed to find an optimal or an approximate solution for RCBI(H, V) problem. GATS starts from a set of solutions called 'population' initialised by using an extension of the network flow model, incorporating a cost function. Two operators, namely crossover and mutation are used to explore the search space, then the quality of each individual in the population is improved by using another local search method named tabu search operator. In this paper we describe the proposed algorithm, then we evaluate and compare its performance with other optimisation techniques. The analysis of the experimental results shows the advantages of our GATS approach in terms of reconstruction quality and computational time.

Online publication date: Sat, 25-Apr-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Metaheuristics (IJMHEUR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com