CORE: core-based synthetic minority over-sampling and borderline majority under-sampling technique
by Chumphol Bunkhumpornpat; Krung Sinapiromsaran
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 12, No. 1, 2015

Abstract: Class imbalance learning has recently drawn considerable attention among researchers. In this area, a rare class is the class of primary interest from the aim of classification. Unfortunately, traditional machine learning algorithms fail to detect this class because a huge majority class overwhelms a tiny minority class. In this paper, we propose a new technique called CORE to handle the class imbalance problem. The objective of CORE is to strengthen the core of a minority class and weaken the risk of misclassified minority instances nearby the borderline of a majority class. These core and borderline regions are defined by the applicability of a safe level. As a result, a minority class is more crowed and dominant. The experiment shows that CORE can significantly improve the predictive performance of a minority class when its dataset is imbalance.

Online publication date: Wed, 22-Apr-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com