Optimum ANN empirical model of capacitive deionisation desalination unit Online publication date: Thu, 11-Jun-2015
by Adel El Shahat; Rami J. Haddad; Youakim Kalaani
International Journal of Industrial Electronics and Drives (IJIED), Vol. 2, No. 2, 2015
Abstract: Capacitive deionisation (CDI) has emerged as a robust energy efficient for water desalination. In this paper, a novel CDI electrosorption process is proposed to increase the efficiency based on real experimental data. It is achieved by artificial neural network (ANN) to develop four models. For problem formulation, closed forms mathematical equations were derived, thus, resulting in a very efficient programming algorithm. Optimum patterns ANN models were validated by implementing two ANN units to drive the CDI electrosorption process. This proposed method was tested and verified using actual and predicted ANN values which yielded excellent results with regression factors between 0.99983 to 1. Optimum patterns are validated in the form characteristics comparisons between genetic and original one. The ANN models their algebraic equations are adopted for various characteristics estimation process. They created with suitable numbers of layers and neurons that provided fast and accurate network training.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Industrial Electronics and Drives (IJIED):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com