Microstructure simulation of Ti-6Al-4V biomaterial produced by electron beam additive manufacturing process Online publication date: Fri, 12-Jun-2015
by Seshadev Sahoo
International Journal of Nano and Biomaterials (IJNBM), Vol. 5, No. 4, 2014
Abstract: Ti-6Al-4V is one of the most promising biomaterial compared to other alloys used for biomedical application. Electron Beam Additive Manufacturing (EBAM) process is a rapid solidification process and the properties of the material depends on the solidification behaviour as well as the microstructure of the build material. Thus, the prediction of part microstructures during the process may be an important factor for process optimisation. In this study, a phase field model is developed for microstructure evolution of Ti-6Al-4V biomaterials produced by EBAM process. The simulation results are compared with the analytical model and experimental findings by measuring the spacing evolution under the solidification condition.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nano and Biomaterials (IJNBM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com