Numerical investigation of high viscous fluid flow between two porous plates using the shooting technique
by Jacques Hona; Elisabeth Ngo Nyobe; Elkana Pemha
International Journal of Engineering Systems Modelling and Simulation (IJESMS), Vol. 7, No. 3, 2015

Abstract: The horizontal channel consists of two parallel rigid plates. These plates are uniformly porous and fixed at different temperatures. The problem is modelled by means of the Navier-Stokes equations and the energy equation. The similarity technique leads to introduce the stream function in the governing equations. The investigation is then reduced to solve a non-linear two-point boundary-value problem with six boundary conditions by applying a numerical strategy based on the shooting method. The numerical results show that the temperature distribution presents a large area of inflection through the channel under certain values of control parameters. The maxima of thermal gradients are located at the walls due to suction. The high viscosity of the fluid is favourable to the existence of the reverse flow and is adverse to suction. For a given Reynolds number, the normal pressure gradient is very sensitive to the temperature difference between the walls.

Online publication date: Sat, 27-Jun-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Engineering Systems Modelling and Simulation (IJESMS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com