

 Int. J. Cloud Computing, Vol. 4, No. 3, 2015 199

 Copyright © 2015 Inderscience Enterprises Ltd.

Cloud-dew architecture

Yingwei Wang
Department of Computer Science and Information Technology,
University of Prince Edward Island,
550 University Avenue, Charlottetown,
Prince Edward Island C1A 4P3, Canada
Email: ywang@upei.ca

Abstract: Users derive many benefits by storing personal data in cloud
computing services; however the drawback of storing data in these services is
that the user cannot access his/her own data when an internet connection is
not available. To solve this problem in an efficient and elegant way, we
propose the cloud-dew architecture. Cloud-dew architecture is an extension of
the client-server architecture. In the extension, servers are further classified into
cloud servers and dew servers. The dew servers are web servers that reside on
user’s local computers and have a pluggable structure so that scripts and
databases of websites can be installed easily. The cloud-dew architecture not
only makes the personal data stored in the cloud continuously accessible by the
user, but also enables a new application: web-surfing without an internet
connection. An experimental system is presented to demonstrate the ideas of
the cloud-dew architecture.

Keywords: cloud-dew architecture; cloud computing; client-server
architecture; software architecture; internet connection; local domain name
system; LDNS; cloud server; dew server; dewsite; dew server structure.

Reference to this paper should be made as follows: Wang, Y. (2015)
‘Cloud-dew architecture’, Int. J. Cloud Computing, Vol. 4, No. 3, pp.199–210.

Biographical notes: Yingwei Wang is a faculty member in the Department of
Computer Science and Information Technology at the University of Prince
Edward Island, Canada. His research interests include cloud computing and
bioinformatics. He obtained his Bachelor’s and Master’s degree at Harbin
Institute of Technology, China and his PhD degree at the University of
Waterloo, Canada.

1 Introduction

The cloud computing paradigm (Sasikala, 2011; Rimal et al., 2009) is quickly accepted as
an alternative to traditional information technology (IT) because of the significant
benefits, such as on-demand resources and low maintenance costs. The architecture of
cloud computing system has been discussed by many researchers (Goscinski and Brock,
2011; Rochwerger, 2009; Tsai et al., 2010; Xiong et al., 2011; Zhang and Zhou, 2009). In
this paper, we discuss cloud computing from one special aspect: the accessibility of user
data.

 200 Y. Wang

In cloud computing environment, users and organisations store their data in the cloud.
If a user stores all of his/her data in the cloud, his/her own computer is merely used to
access the cloud. The advantageous feature of this arrangement is data mobility: user data
can be accessed from anywhere as long as an internet connection is available. The
problem of this arrangement is that the user relies heavily on an internet connection and
the servers. If any problem happens with the servers or an internet connection is not
available, the user cannot access his/her data. According to a survey, 84% of the
consumers are concerned about their data storage location (Habib et al., 2012),
demonstrating that data accessibility is an important issue to users.

One apparent solution is to keep a copy of user data in a user’s local computer. Two
problems are associated with this solution: first, it is not easy to keep the data on the local
computer always consistent with the data in the cloud. Second, the user may have to
remember both local and cloud locations of his/her data. When the user’s data is complex
in nature and numerous, these tasks are not trivial. In this paper, we propose a better
solution.

2 Cloud-dew architecture

2.1 Client-server architecture

The client-server architecture (Wikipedia, 2013a) is depicted in Figure 1. It is a
distributed application structure in computing that partitions tasks or workloads between
the providers of a resource or service, called servers and service requesters, called clients.
Often clients and servers communicate over a computer network on separate hardware,
but both client and server may reside in the same system. Client-server architecture is
versatile and flexible in today’s fast-changing IT landscape. It is modular in structure and
is designed to improve flexibility, usability, scalability and interoperability. It is a
realisation of increasingly distributed information networks accessible from anywhere at
any time. Client-server architecture is the underlying technology of today’s internet and
cloud computing.

Figure 1 Client-server architecture

2.2 Cloud-dew architecture

The cloud-dew architecture is an extension of the client-server architecture. This
architecture is illustrated in Figure 2. Comparing Figure 1 and Figure 2, the term server in

 Cloud-dew architecture 201

the client-server architecture has been replaced with the term cloud server in the
cloud-dew architecture. The cloud-dew architecture was proposed to solve the data
accessibility problem (described in Section 1) in cloud computing services and we want
to be more specific that these servers are providing cloud services. When no confusion
can occur, a cloud server can also be simply called a server. There is another difference
between these two figures: a new kind of server, dew server, is introduced in the
cloud-dew architecture. A dew server is a web server that resides on user’s local
computer. The dew server and its related databases have two functions: first, it provides
the client with the same services as the cloud server provides; second, it synchronises
dew server databases with cloud server databases.

Figure 2 Cloud-dew architecture

2.2.1 Dew servers

A dew server can be considered as a proxy server (Wikipedia, 2013d), although
the purposes, usages and structure of a dew server are not the same with those of
commonly-used proxy servers. A dew server has the following features:

1 A dew server is a lightweight web server. Usually, it only serves one user: the client.

 202 Y. Wang

2 A dew server usually only stores user’s own data. The ‘size’ (i.e., data amount in
related databases) of a dew server is much smaller than the ‘size’ of a cloud server.
Metaphorically, a cloud server is as big as a cloud and a dew server is as small as a
drop of dew.

3 A dew server disappears easily. The dew server’s data could disappear due to
different reasons: hardware damage and failure, virus infections and so on.
Metaphorically, a dew server is as weak as a drop of dew.

4 A disappeared dew server can be recreated because all dew server data has a copy in
cloud servers. Metaphorically, dew will come out again after it disappears as long as
a cloud can provide all the necessities.

5 A dew server is accessible with or without an internet connection because it is
running on the local computer. Metaphorically, a cloud could be far away, but the
dew is close to you.

2.2.2 Cloud-dew applications

The last feature of a dew server suggests a new application: if a website adopts the
cloud-dew architecture, it will be available all the time, with or without an internet
connection, because a dew server runs on the user’s local computer.

Suppose a user stores personal data, such as pictures and messages, on a website, say
http://www.facebook.com. While the data is available publicly, the user cannot access
his/her own data if an internet connection is not available. The user may decide to save a
local copy of personal data in his/her own computer. However, saving pictures and
messages in files may be awkward and difficult to manage.

Suppose a website, for instance http://www.facebook.com, adopts the cloud-dew
architecture. The website will be duplicated onto a dew server running on a user’s local
computer. The duplication is not exactly copying. Generally speaking, the duplicated
website in a dew server (we call it a dewsite) and the original website could be different
in the following aspects:

1 the dewsite does not need to deal with a global heavy load so that it could be much
simpler than the website

2 the dewsite will not include the proprietorial script that the website does not want to
release. Instead, publicly-known technology will be used to implement similar
functionalities

3 the content of a dewsite database could be limited

4 a new functionality, which will synchronise with the website, will be added to the
dewsite.

Once a dewsite duplicating http://www.facebook.com is installed inside a dew server, the
user may access the dewsite. At the beginning, the dewsite does not have the user’s
personal data. To let the dewsite synchronise with the website, the user needs to grant
his/her http://www.facebook.com credentials to the dewsite. These credentials will be
recorded by the dewsite and used in the future. The dewsite will be able to synchronise
with the website http://www.facebook.com and the user’s personal data and his/her

 Cloud-dew architecture 203

friends’ related data will be transferred to the dewsite database. The dewsite will always
be available even when an internet connection is not available.

If the user makes changes on the dewsite when there is no internet connection, the
synchronisation will not be done immediately, but it can be performed automatically
when an internet connection is available later.

2.2.3 The impacts of cloud-dew architecture

When the cloud-dew architecture is adopted, a cloud server and many dew servers
cooperate as a distributed application to provide services. The cloud server provides
global services; a dew server provides direct services to a user. The cloud-dew
architecture has the following impacts:

1 A user not only can take advantage of cloud computing services to save his/her data
in the cloud, but also can have immediate access and physical control over his/her
own data at any time, even when there is no internet connection.

2 Because dew servers exist, a seemingly impossible capability, web surfing without
an internet connection, becomes a reality. Although it is not feasible to access
real-time information and perform communication tasks without an internet
connection, it is still useful to surf through one’s data and pre-downloaded data.
Some communication tasks can also be prepared without internet connection, which
will be done instantly and automatically when a connection is available later.

2.3 Local domain name system (LDNS)

In the example described in Section 2.2.2, a user puts a simplified version of website
http://www.facebook.com in his/her dew server. Suppose another website, say
http://www.hotmail.com, also adopts the cloud-dew architecture and the user also wants
to put a simplified version of this website in the same dew server. A user can access the
dew server by referring the URL http://localhost. But when there are two or more
dewsites in the dew server, one URL cannot distinguish them. To accommodate two or
more dewsites in the dew server and to make web surfing without internet connection
more natural and more attractive, we introduce local domain name system (LDNS).

We suggest using mmm to replace www as an indicator that this URL is a local URL.
For example, we use http://mmm.facebook.com to refer the dewsite of
http://www.facebook.com and use http://mmm.hotmail.com to refer the dewsite of
http://www.hotmail.com.

For instance, a user is attending a party where there is no internet connection. The
user can open URL http://mmm.facebook.com in his/her browser and show favourite
pictures and messages to friends, find phone numbers and other information in the
website and put in new pictures and messages to his/her profile. He/she can also open
URL http://mmm.hotmail.com to read and to reply to e-mails. Of course, at this moment,
new e-mails cannot be received; the composed and ‘sent’ e-mails will not be transferred.
The user can leave the computer in stand-by status. Later, when he/she travels to a
place where an internet connection is available, the dew server will synchronise
http://mmm.facebook.com with http://www.facebook.com automatically so that his/her
http://www.facebook.com profile will be updated according to the changes; the dew

 204 Y. Wang

server will also synchronise http://mmm.hotmail.com with http://www.hotmail.com and
the ‘sent’ e-mails will be transferred automatically.

Many offline e-mail clients provide similar functionalities. The novelty of this
approach is that information organisation and user experience is almost the same with
web surfing when actually the web is not available. Moreover, while an offline e-mail
client can only provide e-mail functions, this approach opens the gate for various web
resources to be simulated in a local computer.

While the task of the (global) domain name system is to map domain names to IP
addresses, the tasks of the LDNS are different. Within the LDNS, IP address mapping is
simple: to map all the local URLs to localhost. Besides IP address mapping, each local
domain name should be redirected to the script of the corresponding dewsite. These two
tasks are discussed in the following points:

2.3.1 Mapping local URLs to localhost

After LDNS has been introduced, URLs can be classified into regular URLs, such as
http://www.example.com and local URLs, such as http://mmm.example.com. All local
URLs should be mapped to localhost and taken over by the dew server instead of being
sent to the internet. There are three methods to perform this mapping.

The first method is to configure the zone file (Wikipedia, 2013e) of the website’s
domain name. This is done by the owner of the domain through the domain’s registrar.
An A record could be added to map mmm to 127.0.0.1. This method is very effective
because the mapping will work on all dew servers. This method is suitable when a
website has adopted the cloud-dew architecture. This method does not work without an
internet connection when browser DNS cache expired.

The second method is to configure the hosts file. The hosts file (Wikipedia, 2013b) is
a file that is used to map host names to IP addresses. This file exists in almost
all operating systems. A user may put names of all the dewsites that he/she wants the
dew server to take over into the hosts file. For example, a user may map
http://mmm.site1.com, http://mmm.site2.com and so on to localhost or IP address
127.0.0.1. This method only works on the computer where the hosts file has been
changed and is suitable when the website has not adopted the cloud-dew architecture, but
a dewsite is created by the user or a third party.

The third method is to change the behaviour of a browser so that local URLs are
mapped to localhost.

2.3.2 Local domain name redirection

When a dew server receives a URL request to localhost, it needs to find out to which
dewsite this URL request is and to redirect the request to the script of the corresponding
dewsite. This task can be accomplished because the host name portion of the URL is
captured by one of the environmental variables. The entry point of each dewsite script
should be managed and searched in an efficient way.

For example, both dewsites http:/mmm.site1.com and http://mmm.site2.com will be
mapped to localhost and taken over by the dew server. The dew server needs to find the
environmental variable which contains the target host name of this URL request. The
URL request will be redirected to the dewsite script for http://mmm.site1.com if the
target host name is http://mmm.site1.com; the URL request will be redirected to the

 Cloud-dew architecture 205

dewsite script for http://mmm.site2.com if the target host name is http://mmm.site2.com.
The details of this redirection are related to the dew server structure discussed in the next
section (Section 2.4).

As a design alternative, we may not introduce LDNS at all. Instead, the behaviour of
a browser could be modified so that it will always try to connect to the website in a cloud
server. If a connection is not available, it will try to connect to the dew server and find the
corresponding dewsite script.

Although this alternative is a viable solution, LDNS seems to be a better one. A
dewsite could be a personalised copy of the website. Therefore, it is possible that a user
may want to go to the dewsite even though the website is available. Once created,
dewsites may gain new roles, thereby requiring proper local URLs to reference them.
Local URLs might be referenced, linked and weaved with other URLs in the internet.

2.4 Dew server structure

Figure 3 shows the structure of a dew server.

Figure 3 Dew server structure

To make web surfing without an internet connection possible, the scripts and databases of
all the dewsites, in which the user is interested, must present in the user’s local computer.
Instead of running one server for each dewsite so that many servers are running on one

 206 Y. Wang

local computer, a reasonable design is to run only one dew server on the local computer
and the dew server will provide all services of these dewsites.

The script and database of each dewsite could be provided by the corresponding
website, by the user, or by a third party. Wherever the dewsite script and database come
from, they should be integrated in the dew server. For this reason, a dew server should
adopt a plug-in structure. In Figure 3, we can see that dewsite script and dewsite database
can be installed (plugged-in) on the dew server in a standardised manner. Once the script
and database of a dewsite are plugged in, the dew server should be able to redirect those
local URLs pointing to the dewsite correctly to the plugged-in script.

It is a challenge for many script packages and databases provided by different
companies/organisations to run simultaneously in the same computer, under the control
of the same dew server. The designers and programmers of a dew server should ensure
that these components will not interfere with each other. Local domain isolation is a
requirement of dew servers.

In the world of web development, many platforms and many database management
systems are available. For web development platforms, there are PHP, Perl, Python, Java
Servlet, JSP, ASP.NET and so on. For DBMSs, there are MySQL, MariaDB,
PostgreSQL, SQLite, Microsoft SQL Server, Oracle, SAP HANA, dBASE, FoxPro, IBM
DB2, among others. Apparently, it is impossible for a dew server to support all platforms
and DBMSs. The following aspects will be helpful in the design of dew servers:

1 a website and its corresponding dewsite do not have to use the same platform and
DBMS

2 existing open source server packages, such as UwAmp and XAMPP, show that it is
feasible to support multiple platforms and multiple DBMSs on desktop and laptop
computers

3 dew server development standards or guidelines are necessary to coordinate dew
server developers and dewsite developers.

2.5 Dew server’s potential applications

Although dew servers are introduced for a specific goal, which is to keep data available
when there is no internet connection, many more new applications could be developed
when powerful dew servers and related DBMSs are in place. One possibility of such
applications is a personal information centre.

One of the basic functions of a dewsite is to synchronise with the website to keep
dewsite data consistent with website data. To go one step further, the dewsite may
actively search and collect website data according to the user’s pre-determined rules.

For example, the user may specify a rule to the dewsite that at a specific time. The
dewsite will collect a specific category of news items from a website such as
http://www.cnn.com. Therefore, the user will still be able to browse CNN news from the
dewsite http://mmm.cnn.com on his/her local computer even when the internet
connection is lost.

Readers may notice that similar functionalities to distribute news have been widely
used in RSS technology. However, using a stand-alone or web-based RSS reader is
different from web surfing. For a web-based RSS reader, the only web page still visible
when an internet connection is lost is the last page retrieved; any further surfing will lead

 Cloud-dew architecture 207

to a no-response page. The focus of our discussion is not how to obtain news, but how to
surf the web without an internet connection.

The main idea of cloud-dew architecture is aimed at the applications on laptop
computers and some powerful tablet computers. With the rapid development of mobile
devices, some smart phones have much more computing resources than before. It is quite
possible that cloud-dew architecture could be used on smart phones in the near future.

As an emerging area, mobile cloud computing (Fernando et al., 2013; Chun et al.,
2011) is very promising. One approach of mobile cloud computing is to consider other
mobile devices in the local vicinity as a peep-to-peer network. The collective resources of
various mobile devices in this network will be utilised by the user in different ways. Of
course, some incentive should be involved for these mobile devices to share their
resources.

If cloud-dew architecture is used in mobile cloud computing, a user may allow the
dew server on his/her smart phone to be accessed by other users in the vicinity. This leads
to the following amazing application: suppose a group of people are in an area without
internet connection. Although each smart phone is not capable of carrying out many
functions and having enough information, the users can share their functions and
information by accessing each other’s dew servers. Thus, they may be able to accomplish
more in this limited environment than without the shared dew servers. This application
also shows that LDNS described in Section 2.3 is necessary.

3 An experimental cloud-dew system

3.1 Basic functionalities

An experimental system has been built to test the ideas of the cloud-dew architecture.
This system includes a website http://www.clouddew.com and a dewsite
http://mmm.clouddew.com. The dewsite was built on our local computer. To demonstrate
this experimental system, we needed to install a dew server and the dewsite
http://mmm.clouddew.com on the tester’s local computer. To make the procedure easier,
we used a website http://mmm.clouddew.com to simulate the dewsite. Without going
through the installation process, a tester can have the same experience as if a dew server
and this dewsite have been installed in the tester’s local computer.

The basic functionalities of website http://www.clouddew.com are very simple: a user
can create, edit, save and delete HTML files. This website can serve many users. A user
does not need to register to use this website. This website accepts openid login
(Wikipedia, 2013c).

The dewsite http://mmm.clouddew.com has the same functionalities as the website: a
user can create, edit, save and delete HTML files. The dewsite does not accept openid
login, because that the openid login needs an internet connection. To keep the dewsite
usable without an internet connection, openid login cannot be used. Users have to go
through a simple registration process to use the dewsite.

3.2 User identity mapping

Some websites need to verify user identities. A login process is a typical way to verify
user identities. For a cloud-dew implementation of such website, two kinds of identities

 208 Y. Wang

are involved: website user identities and dewsite user identities. We are familiar with
website user identities: we need to go through a registration process to obtain credentials,
such as a username and a password and use these credentials to prove our identity. But do
we need dewsite user identities? If the local computer is only used by one user, the dew
user identity may be not necessary. Generally, it is possible for multiple users to access
one dew server and it is also possible for one user to have multiple identities for different
purposes. Thus, it is necessary to keep dewsite user identities. Importantly, website user
identities and dewsite user identities are completely different. Even though they may
have the same username/password, the website user identities and dewsite user identities
are still different because they are verified by different servers and managed in different
databases.

This leaves a unique problem to be dealt with in a cloud-dew system: how to
associate a website user identity with a dewsite user identity.

In this experimental system, suppose the user John Doe uses his openid
johndoe.myopenid.com to access the website http://www.clouddew.com and he also
registers on the dewsite http://mmm.clouddew.com as user johndoe. He creates a file FA
on the dewsite; FA’s owner is johndoe. After a synchronisation process, file FA is
transferred to the website. However, one thing must be changed: the owner of FA should
not be johndoe, because on the website, there is no user johndoe. John Doe logs on the
website using openid johndoe.myopenid.com. Thus FA’s owner should be converted to
johndoe.myopenid.com when it is transferred to the website. In this way, John Doe will
be able to access file FA again when he logs onto the website using his openid.

How does the synchronisation mechanism know the user johndoe in the dewsite is
equivalent to the user johndoe.myopenid.com on the website? John Doe must specify that.
In another words, John Doe will create a link between user johndoe on the dewsite and
user johndoe.myopenid.com on the website. In this experimental system, a link-creating
mechanism was designed for this task.

On the top left corner of the dewsite page http://mmm.clouddew.com, is the button
‘Open http://www.clouddew.com’. This button can open the website page inside the
dewsite page as a frame. Another button will close this frame. When the frame is open,
both the website page and the dewsite page appear inside one single web document. The
user can login to the dewsite and the website in this single web document. When the user
has logged into both sites, a button ‘Create a link to http://www.clouddew.com’ will be
enabled. When the button is pressed, a link is created.

Internally, the userid of the dewsite user and the userid of the website user will be put
into a mapping table; access keys will be issued so that the dewsite can access the linked
website user’s data and the website can access the linked dewsite user’s data.

3.3 Synchronisation

A button ‘Sync with http://www.clouddew.com’ will be enabled once a dewsite user
identity has been linked to a website user identity. The synchronisation procedure will
upload and/or download those files that have not been synchronised. The procedure is
based on the timestamps of the files.

In this cloud-dew experimental system, what the user created will be saved in the
cloud and available anywhere. The user can access his/her files on his/her local computer
at any time at any location even there is no internet connection. If the user is away from
his/her computer, he/she can still access his/her files on the website from another

 Cloud-dew architecture 209

computer that is connected to the internet; all changes will be reflected on his/her
computer after synchronisation at a later time.

4 Conclusions

The cloud-dew architecture is an extension of the client-server architecture. A new kind
of server, dew server, is introduced in this architecture. A dew server is a web server that
resides on a user’s local computer, which performs various functions. With the help of
the dew server plug-in structure and the LDNS, the cloud-dew architecture enables a new
experience: web-surfing without an internet connection. The key contribution of the
cloud-dew architecture is that it provides a systematic scheme to organise user local
data/programmes, to integrate the usage of such local data/programmes with web-surfing
activities seamlessly and to maximise the synchronisation between local
data/programmes and the cloud. An experimental system was built to test and
demonstrate the ideas of the cloud-dew architecture.

References
Chun, B., Ihm, S., Maniatis, P., Naik, M. and Patti, A. (2011) ‘CloneCloud: elastic execution

between mobile device and cloud’, in Sixth Conference on Computer Systems (EuroSys’11),
Salzburg, Austria, 10–13 April, New York, NY, USA, ACM, pp.301–314.

Fernando, N., Loke, S.W. and Rahayu, W. (2013) ‘Mobile cloud computing: a survey’, Future
Generation Computer Systems, Vol. 29, No. 1, pp.84–106.

Goscinski, A. and Brock, M. (2011) ‘Toward higher level abstractions for cloud computing’,
International Journal of Cloud Computing, Vol. 1, No. 1, pp.37–57.

Habib, S.M., Hauke, S., Ries, S. and Muhlhauser, M. (2012) ‘Trust as a facilitator in cloud
computing: a survey’, Journal of Cloud Computing: Advances, Systems and Applications,
[online] http://www.journalofcloudcomputing.com/content/1/1/19 (accessed 27 July 2013).

Rimal, B.P., Choi, E. and Lumb, I. (2009) ‘A taxonomy and survey of cloud computing systems’,
in NCM ‘09: Proceedings of Fifth International Joint Conference on NC, IMS and IDC, Seoul,
Korea, pp.44–51.

Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K. Llorente, I.M., Montero, R.,
Wolfsthal, Y., Elmroth, E., Cáceres, J., Ben-Yehuda, M., Emmerich, W. and Galán, F. (2009)
‘The reservoir model and architecture for open federated cloud computing’, IBM Journal of
Research and Development, Vol. 53, No. 4, pp.535–545.

Sasikala, P. (2011) ‘Cloud computing: present status and future implications’, International
Journal of Cloud Computing, Vol. 1, No. 1, pp.23–36.

Tsai, W., Sun, X. and Balasooriya, J. (2010) ‘Service-oriented cloud computing architecture’, in
ITNG2010: Seventh International Conference on Information Technology: New Generations,
Las Vegas, NV, pp.684–689.

Wikipedia (2013a) Client-Server Model – Wikipedia, the Free Encyclopedia [online]
http://en.wikipedia.org/wiki/Client-server_architecture (accessed 27 July 2013).

Wikipedia (2013b) Hosts (File) – Wikipedia, The Free Encyclopedia [online]
http://en.wikipedia.org/wiki/Hosts_(file) (accessed 27 July 2013).

Wikipedia (2013c) OpenID – Wikipedia, The Free Encyclopedia [online]
http://en.wikipedia.org/wiki/OpenID (accessed 27 July 2013).

Wikipedia (2013d) Proxy Server – Wikipedia, The Free Encyclopedia [online]
http://en.wikipedia.org/wiki/Proxy_server (accessed 27 July 2013).

 210 Y. Wang

Wikipedia (2013e) Zone File – Wikipedia, The Free Encyclopedia [online]
http://en.wikipedia.org/wiki/Zone_file (accessed 27 July 2013).

Xiong, N., Rindos, A., Russell, M.L., Robinson, K.P., Vandenberg, A. and Pan, Y. (2011) ‘Sharing
computing resources to satisfy multi-cloud user requirements’, International Journal of Cloud
Computing, Vol. 1, No. 1, pp.81–100.

Zhang, L. and Zhou, Q. (2009) ‘CCOA: cloud computing open architecture’, in ICWS2009: IEEE
International Conference on Web Services, Los Angeles, CA, pp.607–616.

