Application of a general regression neural network for predicting radial overcut in electrical discharge machining of AISI D2 tool steel Online publication date: Sun, 27-Sep-2015
by M.K. Pradhan; Raja Das
International Journal of Machining and Machinability of Materials (IJMMM), Vol. 17, No. 3/4, 2015
Abstract: In the present research, an artificial neural network (ANN) model has been presented to investigate the variation of the radial overcut, in the electrical discharge machining (EDM). The radial overcut significantly influences the precision and accuracy of the product. Due to the nonlinear, complex relationship amongst the electrode wear, the electrode diameter, EDM parameters, and the machine positioning accuracy the final work piece dimensions are difficult to predict. A full factorial design was used to conduct the experiments the obtained data were segregated in three parts to train the network, to testing for convergence and finally to validate the model. The mean square error convergence criteria, both in training and testing, came out very well. The developed models are found to approximate the responses quite accurately. Results reveal that the proposed models can be employed successfully in the prediction of the stochastic and complex EDM process.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Machining and Machinability of Materials (IJMMM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com