Optimisation methods for initial/tool shape optimisation in metal forming processes Online publication date: Fri, 24-Jun-2005
by J.P. Ponthot, J.P. Kleinermann
International Journal of Vehicle Design (IJVD), Vol. 39, No. 1/2, 2005
Abstract: Nowadays, the computer simulations of metal forming processes using the finite element method (FEM), have reached some level of maturity. Inverse problems' purpose is to determine one or more of these forming processes simulations input data, leading to a desired result. A first example that has now become classical is called parameter identification. It consists in evaluating the material parameters for material behaviour laws that would lead to the most accurate model, minimising the difference between experimental and numerical results. Another example, which is much less extensively described in the literature is the initial geometry and tool shape design, which consists in determining the initial shape of the specimen and/or the shape of the forming tools, in order to provide the desired final geometry after forming process. In this paper, we will show how some optimisation methods are able to solve this shape optimisation problem. We will also compare the efficiency of the proposed numerical methods.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com