Decentralised hybrid workflow scheduling algorithm for minimum end-to-end delay in heterogeneous computing environment Online publication date: Tue, 03-Nov-2015
by Fei Cao; Michelle Mengxia Zhu
International Journal of High Performance Computing and Networking (IJHPCN), Vol. 8, No. 4, 2015
Abstract: This paper considers a decentralised hybrid algorithm for scheduling scientific workflow applications onto an underlying distributed computing environment with heterogeneous resources for minimum end-to-end delay (EED). Distributed scientific workflow applications modelled as directed acyclic graphs (DAGs) are widely applied to various research areas to enable efficient knowledge discovery by automated data processing. Owing to the NP-hardness of this problem, heuristic algorithms are commonly proposed to achieve the EED. Our algorithm combines iterative critical path search and layer-based priority techniques (HICPP) to achieve the minimum EED. Four representative mapping and scheduling algorithms for minimum EED are compared with HICPP. Our simulation results illustrate that HICPP consistently achieves the smallest EED with a low algorithm running time observed from many different scales of simulated test cases.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of High Performance Computing and Networking (IJHPCN):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com