Computer network traffic prediction: a comparison between traditional and deep learning neural networks
by Tiago Prado Oliveira; Jamil Salem Barbar; Alexsandro Santos Soares
International Journal of Big Data Intelligence (IJBDI), Vol. 3, No. 1, 2016

Abstract: This paper compares four different artificial neural network approaches for computer network traffic forecast, such as: 1) multilayer perceptron (MLP) using the backpropagation as training algorithm; 2) MLP with resilient backpropagation (Rprop); (3) recurrent neural network (RNN); 4) deep learning stacked autoencoder (SAE). The computer network traffic is sampled from the traffic of the network devices that are connected to the internet. It is shown herein how a simpler neural network model, such as the RNN and MLP, can work even better than a more complex model, such as the SAE. Internet traffic prediction is an important task for many applications, such as adaptive applications, congestion control, admission control, anomaly detection and bandwidth allocation. In addition, efficient methods of resource management, such as the bandwidth, can be used to gain performance and reduce costs, improving the quality of service (QoS). The popularity of the newest deep learning methods have been increasing in several areas, but there is a lack of studies concerning time series prediction, such as internet traffic.

Online publication date: Tue, 29-Dec-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Big Data Intelligence (IJBDI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com