Fingerprint classification and building a gender prediction model using random forest algorithm Online publication date: Wed, 06-Jan-2016
by Aruna Sreekumaran Pisharody; Shweta Pargaonkar; Vrushali Y. Kulkarni
International Journal of Knowledge Engineering and Data Mining (IJKEDM), Vol. 3, No. 3/4, 2015
Abstract: The popularity of fingerprints as the means of an individual's identification has increased, and has resulted in a drastic increase in the size of fingerprint datasets. Every fingerprint can be classified based on their patterns. This can be done with the help of a classification system, which also helps to reduce the search and space complexity of the identification algorithm. Random Forest (RF) algorithm is an ensemble-learning method proved to be very effective in the field of bioinformatics. The system proposed in this paper applied the RF algorithm to help classify the fingerprints, and found that it produces highly accurate results in reasonable time. In addition, different features of the fingerprints such as number of ridge-endings and bifurcations, number of cores and deltas and average inter-ridge distance, were used to build a gender prediction model, which was found to be reasonably accurate.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Knowledge Engineering and Data Mining (IJKEDM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com