Entropy generation in rectangular microchannels
by Lütfullah Kuddusi
International Journal of Exergy (IJEX), Vol. 19, No. 1, 2016

Abstract: Entropy generation in a rectangular microchannel with fully developed steady gaseous flow at slip flow regime is studied. Two different thermal versions, uniform temperature (H1) and uniform heat flux (H2) on the walls, are considered. Analytically obtained expressions for temperature and velocity fields are used for entropy generation calculations. The effects of rarefaction, geometry, Peclet number Pe and group parameter Br/ on entropy generation (irreversibility) and local variation of entropy generation are explored. The main findings are; irreversibility decreases with rarefaction regardless of the thermal versions, irreversibility increases with aspect ratio for H1 thermal version and exhibits very little change with aspect ratio for H2 thermal version. For H1 thermal version the points of maximal entropy generation are at the middle of walls. For H2 thermal version entropy generation is generally high at immediate vicinity of walls and decreases by departing the walls toward the centre of the microchannel.

Online publication date: Wed, 20-Jan-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com