Optimum weights and biases for feed forward neural network by particle swarm optimisation
by Pratik R. Hajare; Narendra G. Bawane; Poonam T. Agarkar
International Journal of Granular Computing, Rough Sets and Intelligent Systems (IJGCRSIS), Vol. 4, No. 1, 2015

Abstract: This paper introduces particle swarm intelligence (PSI) in feed forward neural network (FFNN) with backpropagation for finding initial weights and biases of the feed forward neural network. The combination of particle swarm optimisation (PSO) and FFNN greatly help in fast convergence of FFNN in classification and prediction to various benchmark problems by overcoming the disadvantage of backpropagation of getting stuck at local minima or local maxima. The benchmarking databases for neural network contain various datasets from various different domains. All datasets represent realistic problems which could be called diagnosis tasks and all but one consist of real world data. Two such benchmarking problems are selected in this paper for comparison and the performance of PSO with FFNN for finding weights and biases is implemented and compared with random initialisation of weights and biases with normal FFNN. The result shows that using PSO minimises the prediction error.

Online publication date: Tue, 16-Feb-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Granular Computing, Rough Sets and Intelligent Systems (IJGCRSIS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com