Handling batch effects on cross-platform classification of microarray data
by Worrawat Engchuan; Asawin Meechai; Sissades Tongsima; Jonathan H. Chan
International Journal of Advanced Intelligence Paradigms (IJAIP), Vol. 8, No. 1, 2016

Abstract: Gene-set-based microarray analysis is commonly applied in the classification of complex diseases. However, the robustness of a classifier is normally limited by the small number of samples in many microarray datasets. Although a merged dataset from multiple experiments may improve classification performance, batch effects or technical/biological variations among these experiments may eventually confound the analysis. Besides the batch effects, merging multiple microarray datasets from different platforms can generate missing values, due to a different number of covered genes. In this work, we extend previous works that focused on the missing value incident by further exploring the impact of batch effects on cross-platform classification. Two quality measures of data purity are proposed and two data imputation methods are compared. The results show that by doing batch correction the quality of the merged data is improved significantly. Furthermore, the classification performance is high when the normalised purity is above a certain threshold.

Online publication date: Wed, 17-Feb-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Advanced Intelligence Paradigms (IJAIP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com