Chameleon: personalised and adaptive fall detection of elderly people in home-based environments Online publication date: Thu, 17-Mar-2016
by Lingmei Ren; Weisong Shi
International Journal of Sensor Networks (IJSNET), Vol. 20, No. 3, 2016
Abstract: Threshold-based fall detection has been widely adopted in conventional fall detection systems. In this paper, we argue that a fixed threshold is not flexible enough for different people. By exploiting the personalised and adaptive threshold, we propose a novel threshold extraction model, which meets being adaptive to detect a fall, while only taking consideration of data from activity of daily living (ADL). We believe this is a solid step toward improving the performance of the threshold-based fall detection solution. Furthermore, we incorporate the proposed idea into Chameleon. To evaluate the performance of this threshold extraction model, we compared Chameleon with advanced magnitude detection (AMD) and fixed and tracking fall detection (FTFD). The results show Chameleon has an accuracy of 96.83% when detecting falls, which is 1.67% higher than FTFD and 2.67% higher than AMD. Meanwhile, the sensitivity and the specificity of Chameleon are also higher than the other two algorithms.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Sensor Networks (IJSNET):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com