Markov logic networks based emotion classification for Chinese microblogs
by Dongru Ruan; Xiaoli Ping; Kai Gao
International Journal of Intelligent Information and Database Systems (IJIIDS), Vol. 9, No. 2, 2016

Abstract: With the rapid development of Web 2.0, more and more people have begun to use Weibo as a platform for giving opinions and expressing their emotions. As the microblog rapidly increasing, the researchers pay more attention to it. In addition, emotion has come to be established as a new direction of classification. This paper classifies Chinese microblogs through this prism of emotion. When analysing a microblog, we classify it under several different states of emotion. However, such microblogs contain complex correlativities. The traditional approaches have been to classify each message independently, ignoring correlations that may exist between them. In order to overcome these problems arised from traditional approaches, this paper adopts a statistical relational learning (SRL) method, Markov logic networks (MLNs), to establish the model for Chinese microblogs and to perform the task of emotion classification. The experimental results on imbalanced datasets reveal that MLNs is effective on emotion classification and slightly better than the performance of the baseline; the experimental results on balanced datasets indicate that MLNs is influenced by dataset and the balanced datasets can effectively improve the performance of MLNs on emotion classification.

Online publication date: Tue, 22-Mar-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Information and Database Systems (IJIIDS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com