Multi-parametric programming-based energy control strategy for parallel hybrid heavy-duty truck Online publication date: Tue, 28-Jun-2016
by Stefano Agostoni; Federico Cheli; Ferdinando Luigi Mapelli; Chen Tao; Davide Tarsitano; Luo Yugong; Tang Yuhuan
International Journal of Heavy Vehicle Systems (IJHVS), Vol. 23, No. 3, 2016
Abstract: This paper develops an energy control strategy based on a multi-parametric programming control algorithm for a parallel hybrid heavy-duty truck. First, based on the non-linear characteristics and multiple working modes of the heavy-duty truck, a set of piecewise linear models including longitudinal dynamics, engine and electric motor are established and synthesised to a mixed logical dynamic (MLD) model. Then, an objective function for achieving the best fuel economy is formulated and the optimal control law is analytically calculated using a multi-parametric programming algorithm. Finally, the simulation of the hybrid heavy-duty truck model is conducted under UDDSHDV drive cycle and the result shows that the multi-parametric programming energy control strategy can effectively improve fuel economy compared to the traditional heavy-duty truck simulation model with the same engine.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Heavy Vehicle Systems (IJHVS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com