Design of quantum cost efficient reversible multiplier using Reed-Muller expressions
by N. Rajeev Pankaj; P. Venugopal; Prasanthi Mortha
International Journal of Computing Science and Mathematics (IJCSM), Vol. 7, No. 3, 2016

Abstract: Reversible logic design is one of the emerging trends in recent years as it is good for low power design. A good number of design methods for reversible multipliers were proposed earlier. In this paper, two bit reversible multiplier was designed using Reed-Muller expressions, and this new reversible multiplier was used to design 4-bit reversible multiplier. The results save 16.9% of quantum cost (QC), 38.5% of garbage outputs (GOs) and 10.7% of constant inputs (CIs) compared to earlier designs. The simulations are done on Xilinx 10.1 and are presented. The methodology is extended for the design of 8-bit and 16-bit multipliers and the reversible logic metrics were presented for different bit lengths.

Online publication date: Sun, 17-Jul-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computing Science and Mathematics (IJCSM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com