Modelling of ammonia combustion characteristics at preheating combustion: NO formation analysis
by Jun Li; Hongyu Huang; Haoran Yuan; Tao Zeng; Masayoshi Yagami; Noriyuki Kobayashi
International Journal of Global Warming (IJGW), Vol. 10, No. 1/2/3, 2016

Abstract: In order to improve the combustion characteristics and flame stability of NH3-air flame, preheating the reactants at different temperature was proposed in this study. We focused on the formation of NO at NH3 preheated combustion because NH3 is a typical fuel-nitrogen. The NO formation characteristics of premixed NH3-air mixtures at various preheating temperatures of the reactants were numerically analysed. The Miller and Bowman mechanism was applied in the numerically calculation of all species. The results show that the formation reaction rates of thermal NO from N + O2 → NO + O, and N + OH → NO + H increase with the increase of preheating temperatures of the reactants at fuel lean condition. Higher decomposition reaction rate of N + NO → N2 + O at stoichiometric condition finally results in a lower formation of NO comparing to that at fuel lean condition. At fuel rich condition, the reactions of NH2 + NO → N2 + H2O, NH + NO → NNH + OH have grate effect on the decomposition of NO at all preheating temperatures of the reactants, which results in an extremely low formation of NO, showing a potential for reducing NO formation in NH3 combustion.

Online publication date: Fri, 22-Jul-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Global Warming (IJGW):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com