Unsupervised method of word sense disambiguation for real time associated word identification in human-robot interaction Online publication date: Mon, 12-Sep-2016
by Sukjae Choi; Ohbyung Kwon
International Journal of Advanced Media and Communication (IJAMC), Vol. 6, No. 1, 2016
Abstract: This paper presents a system architecture and algorithm for the disambiguation problem in human-robot interaction. Currently, when we have a communication with robot, there are ambiguity problems which lead to a misunderstanding. Conventional methods only identify ambiguity in limited ways and in few contexts due to the cost of doing so. The proposed method using real Hangul input object (RHINO) cloud identifies ambiguous words, phrases and sentences in many contexts and suggests appropriate alternatives. And by calculating the frequency of an ambiguous word, an associated word and the theme we can obtain the associated strength. The theme which has the biggest strength is the meaning of the ambiguous word. This process reflects the fluctuation of associated words' social cultures because it searches words in real time.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Advanced Media and Communication (IJAMC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com