MAP task allocation strategy in an ARM-based Hadoop cluster by using local storage as split cache Online publication date: Mon, 12-Sep-2016
by Bongen Gu; Yoonsik Kwak
International Journal of Advanced Media and Communication (IJAMC), Vol. 6, No. 1, 2016
Abstract: The increase of power consumption makes the cost of cluster operation higher. One approach for reducing power consumption is to establish a cluster with small nodes which equip a low-power, high-performance processor. Since many low-power consumed nodes do not have storage devices, a separate storage system is required to store large-volume data while nodes mount this storage space to save data. When a Hadoop cluster is configured in such a condition, each node's access to a storage results in excessive network load and delays the execution of Hadoop Map tasks. In this study, we propose a newmap task scheduling policy for Hadoop. This policy transmits multiple splits to nodes at once to reduce network load. In addition, local storage space of nodes is used as a cache for a split, which shortens the time to access splits, so this policy can reduce the execution time of Hadoop applications.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Advanced Media and Communication (IJAMC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com