Improving hand vein recognition by score weighted fusion of wavelet-domain multi-radius local binary patterns Online publication date: Wed, 19-Oct-2016
by Yiding Wang; Qiangyu Duan; Lik-Kwan Shark; Di Huang
International Journal of Computer Applications in Technology (IJCAT), Vol. 54, No. 3, 2016
Abstract: Among biometric modalities, hand vein patterns are seen as providing an attractive method for high-level security access applications owing to high impenetrability and good user convenience. For biometric recognition based on near-infrared dorsal hand vein images, Local Binary Patterns (LBP) have emerged as a highly effective descriptor of local image texture with high recognition performance reported. In this paper, the traditional approach with LBP applied in the spatial domain is extended to multi-radius LBP in the wavelet domain to provide a more comprehensive set of feature categories to capture grey-level variation characteristics of vein patterns, and score weighted fusion based on the relative discriminative power of each feature category is proposed to achieve higher recognition performance. The proposed methodology is shown to provide a more robust performance with a recognition rate in excess of 99% and an equal error rate significantly less than 2%.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com