Solar thermochemical Dy2O3/DyO water splitting cycle for hydrogen production Online publication date: Mon, 26-Dec-2016
by R.R. Bhosale; A. Kumar; F. AlMomani; S. Yousefi; D. Dardor; M.H. Usmani; M.S. Anis; U. Ghosh
International Journal of Exergy (IJEX), Vol. 22, No. 1, 2017
Abstract: The thermodynamic analyses of the dysprosium oxide-based water splitting (Dy-WS) cycle are reported in this paper. The first step of the Dy-WS cycle involves thermal reduction of Dy2O3, whereas water splitting reaction is the following second step. HSC simulation experiments (by varying the partial pressure of O2 and reaction temperature) are performed to identify the equilibrium compositions associated with both the above given steps. Exergy and energy analysis of the Dy-WS cycle is performed to estimate various solar reactor process parameters including the solar-to-fuel conversion efficiency with and without heat recuperation. The HSC simulation results indicate that the solar-to-fuel conversion efficiency for the Dy-WS cycle is comparable with the ceria cycle.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com